
Algorithmic and advanced
Programming in Python

Eric Benhamou eric.benhamou@dauphine.eu
Chien-Chung.Huang chien-chung.huang@ens.fr
Sofía Vázquez sofia.Vazquez@dauphine.eu

Master class 6

Algorithmic and advanced Programming in Python

Outline
1. Generic concept about API
2. Introduction to virtual environment + Flask
3. Data structure
4. Start Playing with data structure and linked list

2

Algorithmic and advanced Programming in Python

Reminder of the objective of this course
• People often learn about data structures out of context
• But in this course you will learn foundational concepts by building a

real application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in Python

Reminder of previous session
• In Master class 5, we discuss about stacks and queues
• Question: can you summarize the pros and cons of stacks and queues?

4

Algorithmic and advanced Programming in Python

What is an API?
• Web APIs (Application Programming Interfaces) are tools for making

information and functionalities accessible via the Internet.
• In this lecture, we will see

• What are AI and how to use them
• How to build an API that makes data available to users
• What should be good practices in terms of API writing and how to apply them

on a concrete example

Question: do you know what an API is?

5

Algorithmic and advanced Programming in Python

What is exactly an API?
• A web API allows information and functionality to be manipulated by

computer programs over the internet.
• For example, with the Twitter web API, you can write a program in a

language like Python or JavaScript that collects metadata about tweets.
• More generally, in programming, the term API (short for Application

Programming Interface) refers to a part of a computer program
designed to be used or manipulated by another program, unlike
interfaces which are designed to be used or manipulated by humans.

Question: what APIs are good for and when to use it?

6

Algorithmic and advanced Programming in Python

When to create an API?
• Computer programs often need to communicate with each other or

with the underlying operating system, and APIs are one way to do this.
• In general, we create an API when:

• Our dataset is large, which makes uploading by FTP cumbersome or resource
intensive.

• Users need to access data in real time, for example for viewing on a website or
as part of an application.

• Our data is changed or updated frequently.
• Users only need to access part of the data at a time.
• Users have to do more than just view the data, such as contributing, updating,

or deleting.
Question: what are alternatives to API?

7

Algorithmic and advanced Programming in Python

What are alternative to API?
• If you have data that you want to share with the world, creating an API

is one way to do it.
• However, APIs are not always the best way to share data with users.
• If the volume of data you want to share is relatively small, it is better

to provide a "data dump" in the form of a JSON, XML, CSV or Sqlite
file. Depending on the resources available, this approach may be
viable up to a volume of a few gigabytes.

• Note that we can provide both a data dump and an API; it's up to the
users to choose what suits them best.

Question: what are the common words in web API world?

8

Algorithmic and advanced Programming in Python

API terminology 1/3
• When building or using an API, the following terms are frequently

encountered:

• HTTP (HyperText Transfer Protocol): This is the primary means of
communicating information on the Internet. HTTP implements a number of
"methods" that tell which direction data should move and what should be done
with it. The two most common are GET, which retrieves data from a server,
and POST, which sends new data to a server.

-> Do you know any other method?

• HTTPS:
-> Do you know the difference with HTTP?

9

Algorithmic and advanced Programming in Python

API terminology 2/3
URL (Uniform Resource Locator): Address of a resource on the web,
such as https://dauphine.psl.eu/en/. A URL consists of a protocol (https :
//), a domain (dauphine.psl.eu), an optional path (/ en) .

It describes the location of a specific resource, such as a web page. In
the field of APIs, the terms URL, request, URI, endpoint refer to similar
ideas. In the following, we will only use the terms URL and request, to
be clearer.

To make a GET request or follow a link, all you need is a web browser.

10

Algorithmic and advanced Programming in Python

• JSON (JavaScript Object Notation): This is a text data storage format
designed to be readable by both humans and machines. JSON is the
most common format for data retrieved by API, the second most
common being XML.

• REST (REpresentational State Transfer): this is a methodology that
brings together best practices in terms of API design and
implementation. APIs designed according to the principles of the
REST methodology are called REST APIs. There are, however, many
controversies surrounding the exact meaning of the term. In the
following, we will speak more simply of Web API or HTTP API.

11

API terminology 3/3

Algorithmic and advanced Programming in Python

We will now implement an API
• In the following, we will see how to create an API using Python and

the Flask framework + SQLite

• There are alternatives to this solutions:
• Flask + PostGre
• Python Django + SQLite/PostGre
• PhP + MySQL/PostGre
• Node JS + SQLite/PostGre/MongoDB

Question: Do you know the differences?
Question: Do you have experience with FLASK?

12

Algorithmic and advanced Programming in Python

What is flask?
• Flask is a micro web framework written in Python whose initial

release was in 2010
• It is a microframework because it does not require particular tools or

libraries.
• In particular it has no database abstraction layer, form validation, or

any other components where pre-existing third-party libraries provide
common functions.

• It relies on the Jinja template engine and the Werkzeug WSGI toolkit

• https://flask.palletsprojects.com/en/2.0.x/

13

Algorithmic and advanced Programming in Python

Why Flask?
• Python has several development frameworks for producing web pages

and APIs.
• Apart from Flask, the other best known is Django, that is a very rich

and heavy framework. Django can be overwhelming for inexperienced
users, however.

• Flask applications are built from very simple frameworks and are
therefore more suitable for prototyping APIs.

• Flask in addition is faster lighter and more modern

14

Algorithmic and advanced Programming in Python

A simple Flask example

15

Algorithmic and advanced Programming in Python

If you run the python code, you get

16

Algorithmic and advanced Programming in Python

It is good practice to name main index home as
follows

17

Question: What should I get in terms of output?

Algorithmic and advanced Programming in Python

Here we go!

18

Algorithmic and advanced Programming in Python

How works Flask?
• Flask sends HTTP requests to Python functions.
• In our case, we applied a URL path (‘/‘) to a function: home.
• Flask executes the function code and displays the result in the browser.
• In our case, the result is a welcome HTML code on the site hosting our

API.

19

Algorithmic and advanced Programming in Python

Routes!
• The process of applying URLs to functions is called routing.
• The instruction:

@app.route('/', methods=[‘GET'])
appearing in the program tells Flask that the home function matches the
path /.
The methods list (methods = ['GET']) is a keyword argument that tells
Flask what type of HTTP requests are allowed.

We will use mostly GET requests in the following, but many web
applications use both GET (to send data from the application to users)
and POST (to receive data from users).

20

Algorithmic and advanced Programming in Python

Other requests
• The most popular API design methodology is called REST.

• The most important aspect of REST is that it is based on four methods
defined by the HTTP protocol: GET, POST, PUT and DELETE.

• These correspond to the four standard operations performed on a
database: READ, CREATE, UPDATE and DELETE.

21

Algorithmic and advanced Programming in Python

Important Flask concepts
• import Flask:
This instruction imports the Flask library, which is available by default in
Anaconda. If not you need to install the package
-> Do you know how?
app = flask.Flask(__name__) :
””Creates the Flask application object, which contains application data and
methods for actions that can be performed on the object. The last app.run ()
statement is an example of method usage.
””
app.run()
””allows you to run the application. You can also specify
host=None, port=None, debug=None”””

22

Algorithmic and advanced Programming in Python

Programming concept
• It is good practice to create a virtual environment

Question: Do you know what is a virtual environment in python?

23

Algorithmic and advanced Programming in Python

First use a virtual environment
• A virtual environment essentially just compartmentalizes our project

and its dependencies so that there won’t be any clashes with additional
project that we might make in the future.

• So it is highly recommended to use a virtual environment for large
project so that we have an independent setup.

• When we use pythonanywhere,
this is precisely what we have already put in place

24

Algorithmic and advanced Programming in Python

Create a virtual environment
• Create a project folder and a venv folder within it:
$ mkdir FlaskAPI
$ cd FlaskAPI
$ python –m venv venv

You can check that the venv has been created easily with ls
$ ls
-> venv/

25

Algorithmic and advanced Programming in Python

Checking virtual environment
If you change your directory to venv, you should be able to see what is
inside
$ cd venv
$ ls
You should see it contains various subfolders
📁 bin/ 📁 include/ 📁 lib/ 🗎 pyvenv.cfg
You do not need to worry about these folders but you can check that
within bin folder, you have various libraries
🗎 activate 🗎 activate.fish 🗎 easy_install-3-9 🗎 pip 🗎 pip3….

26

Algorithmic and advanced Programming in Python

How to check your current python version and
libraries?
• Just type
$ python –version
Once we have installed the virtual environment, we need to activate the
virtual environment
$. venv/bin/activate In windows: > venv/Scripts/activate

You can see the virtual environment is activated as we see it in parenthesis
(venv)
You can check also the virtual environment is activated with this command
$ env | grep VIRTUAL_ENV
You should get VIRTUAL_ENV=/Users/…./FlaspAPI/venv/

27

Algorithmic and advanced Programming in Python

If Flask is not installed
• pip install flask
• If you go to virtual environment you can check that flask is installed as

you would get
• $ ls venv/bin
You should see now
🗎 Flask

28

Algorithmic and advanced Programming in Python

One dot pifile
• To educe the complexity of our project, we will implement all databse

concepts using one dot pifile. Keep in mind that in real production
environment this will be more complicated

• Let us start and create a file called server.py
$ vim server.py

Throught the class, I will be using vim but feel free to use your own
editor

29

Algorithmic and advanced Programming in Python

Create a server.py file
from flask import Flask

app = Flask(__name__)

""" What it does behind the scene is that the Flask object implements a WSGI
application and acts as the central object. It is passed the name of the module or
package of the application
Once it is created it will act as a central registry for the view functions the url rules
template configuration and much more

You do not really need to know. Flask is a middleware that sits between our python
server (on the backend) and the front end """

30

Algorithmic and advanced Programming in Python

Add a database
Once we have the app variable which is a Flask object, we can associate a database

app = Flask(__name__)
app.config[“SQALCHEMY_DATABASE_URI”]

""" App.config is a standard python dictionary
we will use a file to keep this simple """

app.config[“SQLALCHEMY_DATABASE_URI”] = “sqlite://sqlitedb.file”
app.config[“SQL_TRACK_MODIFICATIONS”] = 0

31

Algorithmic and advanced Programming in Python

What does it do behind the scene?
The instruction
app.config[“SQLALCHEMY_DATABASE_URI”] = “sqlite://sqlitedb.file”
tells the Flask app that there is an SQL Lite database whose data are stored on a file
called sqlitedb.file

You can disable for the time being SQL track modification to ensure this is quite
light
app.config[“SQL_TRACK_MODIFICATIONS”] = 0

32

Algorithmic and advanced Programming in Python

SqlAlchemy
• SqlAlchemy is an object relational mapper
• https://www.sqlalchemy.org/

• It gives application developers the full
power and flexibility of SQL with an an
object relational mapper (ORM)

Question: Do you know what is a virtual
environment in python?

33

Algorithmic and advanced Programming in Python

• In short, it allows you to interact with an SQL database in an object-
oriented way . Behind the scenes it's converting your object-oriented
code into SQL statements and queries

• So Flask sql alchemy just makes sql alchemy more compatible with
Flask applications and the way this essentially is going to work is
we're going to create classes that represent the tables in our database

34

Algorithmic and advanced Programming in Python

A typical example
• so for example if we have a table for users with an orm we're going to

create models for each table and a user table in class form would look
something like this

35

Algorithmic and advanced Programming in Python

The class object
class User(db.Model):
Tells python that this is a table in an SQL databse

__tablename__ = "user“
Gives the name the table

36

Algorithmic and advanced Programming in Python

Add sql table fields or columns
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(50))
email = db.Column(db.String(50))
address = db.Column(db.String(200))
phone = db.Column(db.String(50))
posts = db.relationship("BlogPost", cascade="all, delete")

Question: Can you tell what each line is doing?

37

Algorithmic and advanced Programming in Python

db.Column
• db.Column creates a column in the table

• db.Column(type either db.String, db.Date, db.Integer
• For string, you can specify the max length,

• You can say what is the primary_key for the Table

Question: What is a primary key?

38

Algorithmic and advanced Programming in Python

Relating two tables together
posts = db.relationship("BlogPost", cascade="all, delete")

so now that we understand what an object relational mapper is and we
understand what sql alchemy is we can move back up to our necessary
imports

we're going to need to add one more configuration because by default
sqlite doesn't enforce foreign key constraints

39

Algorithmic and advanced Programming in Python

Enforce foreign key constraint
• from sqlalchemy import event
• from sqlalchemy.engine import Engine

configure sqlite3 to enforce foreign key contraints
@event.listens_for(Engine, "connect")
def _set_sqlite_pragma(dbapi_connection, connection_record):

if isinstance(dbapi_connection, SQLite3Connection):
cursor = dbapi_connection.cursor()
cursor.execute("PRAGMA foreign_keys=ON;")
cursor.close()

Question: What is a foreign key constraint?

40

Algorithmic and advanced Programming in Python

foreign key constraint
• A foreign key constraint specifies that the key can only contain

values that are in the referenced primary key, and thus ensures the
referential integrity of data that is joined on the two keys. You can
identify a table's foreign key when you create the table, or in an
existing table with ALTER TABLE .

41

Algorithmic and advanced Programming in Python

foreign key constraint
• A Foreign Key is a database key that is used to link two tables together.
• The FOREIGN KEY constraint identifies the relationships between the database tables by

referencing a column, or set of columns, in the Child table that contains the foreign key, to the
PRIMARY KEY column or set of columns, in the Parent table.

• The relationship between the child and the parent tables is maintained by checking the existence of
the child table FOREIGN KEY values in the referenced parent table’s PRIMARY KEY before
inserting these values into the child table.

• In this way, the FOREIGN KEY constraint, in the child table that references the PRIMARY KEY
in the parent table, will enforce database referential integrity.

• Referential integrity ensures that the relationship between the database tables is preserved during
the data insertion process. Recall that the PRIMARY KEY constraint guarantees that no NULL or
duplicate values for the selected column or columns will be inserted into that table, enforcing the
entity integrity for that table.

• The entity integrity enforced by the PRIMARY KEY and the referential integrity enforced by the
FOREIGN KEY together form the key integrity.

42

Algorithmic and advanced Programming in Python

Difference between FOREIGN KEY and
PRIMARY KEY
• The FOREIGN KEY constraint differs from the PRIMARY KEY

constraint in that, you can create only one PRIMARY KEY per each
table, with the ability to create multiple FOREIGN KEY constraints in
each table by referencing multiple parent table. Another difference is
that the FOREIGN KEY allows inserting NULL values if there is no
NOT NULL constraint defined on this key, but the PRIMARY KEY
does not accept NULLs.

• The FOREIGN KEY constraint provides you also with the ability to
control what action will be taken when the referenced value in the
parent table is updated or deleted, using the ON UPDATE and ON
DELETE clauses.

43

Algorithmic and advanced Programming in Python

Hence here are our two tables

44

Algorithmic and advanced Programming in Python

Create the database
• From server import db
• db.create_all()

• This will create the database

45

Algorithmic and advanced Programming in Python

• We can browse the sqlite database with https://sqlitebrowser.org/

Check the database

46

Algorithmic and advanced Programming in Python

Open BD Browser for SQLite

47

Algorithmic and advanced Programming in Python

Open file

48

Algorithmic and advanced Programming in Python

Last but not least create routes for the Flask api
• Routes are functions with decorator for the backend
• So to create the first route for creating user is quite simple

routes
@app.route("/user", methods=["POST"])
def create_user():

data = request.get_json()
new_user = User(

name=data["name"],
email=data["email"],
address=data["address"],
phone=data["phone"],

)
db.session.add(new_user)
db.session.commit()
return jsonify({"message": "User created"}), 200

49

Algorithmic and advanced Programming in Python

Let us comment this code

50

Algorithmic and advanced Programming in Python

In Lab session
• You will play with the concepts and starts getting more and more

familiar with the database
• This will be useful for your project

• Lab is done by Sofia Vasquez

51

